
STRNCAT 1
ID: 853-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

STRNCAT
Requires careful tracking of character count in the buffer and use of appropriate units, and must be null
terminated.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-23

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 7219 bytes

Attack Category • Malicious Input

• Denial of Service

Vulnerability Category • Buffer Overflow

• Unconditional

Software Context • String Management

Location

Description strncat() requires careful tracking of character count
in the buffer and must be null terminated.

strncat() concatenates one string onto another,
adding no more of the second string than the
specified count of characters.

There are two basic problems with strncat. First,
strncat() uses a max count parameter, not a size
parameter, for copying characters. That is, the user
must provide the maximum characters to copy,
which could overrun the buffer size if there are
already too many characters in the buffer. Common
misuse of strncat() family functions can result in
buffer overrun.

The second problem is that many implementations
of strncat() do not guarantee that the resulting
string will be null terminated. This can happen if
the concatenated string is exactly the size of the
allowed max count in the buffer, not leaving space
for the final null character. The next time the string
is accessed, the program will read off the end of the
string and potentially cause a DoS or buffer overrun
problem.

Note: For routines that use wide characters
(WCHAR or Unicode), the counts need to be
specified as *number of characters*, not *number
of bytes*. On Windows, the StringCch replacement
functions accept character counts whereas the

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

STRNCAT 2
ID: 853-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

StringCb functions accept byte counts. Specifying
the count incorrectly can lead to buffer overflow.

APIs Function Name Comments

_mbsnbcat appends max count
bytes in a MBC string

_tcsncat

StrCatBuff uses BuffSize, not "max
chars to append"

StrCatBuffA uses BuffSize, not "max
chars to append"

StrCatBuffW uses BuffSize, not "max
chars to append"

StrCatN

StrCatNA

StrCatNW

StrNCat

strncat have to keep track of
size as it builds up

StrNCatA

StrNCatW

wcsncat

Method of Attack If coded incorrectly, unpredictable behavior may
occur even in the absence of an attacker. If attacker
can control string to be appended, arbitrary code
execution could result.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

Anywhere
strncat() is
used.

There are a
variety of
solutions:
1) Replace
strncat with a
function that
takes a buffer
size (instead of
max count) and
terminates the
string properly.
This avoids
the common
misuse and
complication
of keeping a
"max count

Errors can still
occur, but this
reduces the
likelihood.

STRNCAT 3
ID: 853-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

to append"
parameter and
ensures that the
string is null
terminated in
all cases. For
example, use
StringCchCatN()
or strlcat(),
where
supported.
2) Replace
strncat with
a routine like
snprintf for
generic string
formatting
capabilities.
However, be
aware that
the snprintf
function has
some platform-
specific issues
that need to be
understood in
order to ensure
safe usage.

Signature Details strncat(*d, *s, int charcount)

Examples of Incorrect Code const int BUFSIZE = 18;
char d[BUFSIZE];
char w[] = "Word";
d[0] = '\0';
while (strlen(d) < BUFSIZE-1) {
strncat(d, w, BUFSIZE); /*
Results in overflow */
}

Examples of Corrected Code /* if one must use strncat(), the
following is safe */

const int BUFSIZE = 18;
char d[BUFSIZE];
char w[] = "Word";
d[0] = '\0';
while (strlen(d) < BUFSIZE-1) {
strncat(d, w, BUFSIZE-1-
strlen(d)); /* Avoids overflow */
}
d[BUFSIZE-1] = '\0'; /* Ensure
null termination */

STRNCAT 4
ID: 853-BSI | Version: 4 | Date: 5/16/08 2:39:37 PM

/* on platforms such as MacOS and
FreeBSD that support it, strlcat()
is a better choice than strncat()
*/

const int BUFSIZE = 18;
char d[BUFSIZE];
char w[] = "Word";
d[0] = '\0';
while (strlen(d) < BUFSIZE-1) {
strlcat(d, w, BUFSIZE); /* Avoids
overflow and null terminates */
}

Source References • Howard, Michael & LeBlanc, David C. Writing
Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002, ISBN: 0735617228.

• man page for sprintf()

• man page for strlcat()

Recommended Resources • MSDN on safe string functions.2

Discriminant Set Operating System • Any

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp
mailto:copyright@cigital.com

